Πώς να κάνετε έναν υπολογισμό του εξαερισμού: τύποι και παράδειγμα του υπολογισμού του συστήματος παροχής και εξαγωγής

Ονειρεύεστε ότι υπήρχε ένα υγιές μικροκλίμα στο σπίτι και δεν υπήρχε μυρωδιά υγρασίας και υγρασίας σε κανένα δωμάτιο; Για το σπίτι ήταν πραγματικά άνετο, ακόμη και στο στάδιο του σχεδιασμού είναι απαραίτητο να διεξαχθεί ένας αρμόδιος υπολογισμός του εξαερισμού.

Αν κατά τη διάρκεια της κατασκευής του σπιτιού για να χάσετε αυτό το σημαντικό σημείο στο μέλλον, θα πρέπει να λύσει μια σειρά από προβλήματα, από την απομάκρυνση μούχλα στο μπάνιο μέχρι τη νέα επισκευή και εγκατάσταση των συστημάτων αεραγωγών. Συμφωνώ, δεν είναι πολύ ευχάριστο να βλέπετε τα καυτά καλούπια μαύρου καλουπιού στο περβάζι παραθύρου ή στις γωνίες του παιδικού δωματίου ή να επανασυνδέετε τον εαυτό σας σε εργασίες επισκευής.

Θέλετε να υπολογίσετε τον εαυτό σας, ξεκινώντας από τη διάμετρο των αεραγωγών και τελειώνοντας με το μήκος τους για όλους τους χώρους του σπιτιού, αλλά δεν ξέρετε πώς να το κάνετε σωστά; Θα σας βοηθήσουμε σε αυτό - το άρθρο περιέχει χρήσιμα υλικά για τον υπολογισμό, συμπεριλαμβανομένων των τύπων και ένα πραγματικό παράδειγμα για δωμάτια διαφορετικών σκοπών και μια συγκεκριμένη περιοχή.

Επίσης, επελέγησαν οι πίνακες από τα βιβλία αναφοράς, που αντιστοιχούν στα πρότυπα, τις οπτικές φωτογραφίες και τα βίντεο, στα οποία χρησιμοποιήθηκε ένα παράδειγμα ανεξάρτητου υπολογισμού του συστήματος εξαερισμού σύμφωνα με τα πρότυπα.

Αιτίες προβλημάτων αερισμού

Με τους σωστούς υπολογισμούς και την κατάλληλη εγκατάσταση, ο εξαερισμός του σπιτιού γίνεται με τον κατάλληλο τρόπο. Αυτό σημαίνει ότι ο αέρας στους χώρους διαβίωσης θα είναι φρέσκο, με φυσιολογική υγρασία και χωρίς δυσάρεστες οσμές.

Αν παρατηρήσετε την αντίστροφη εικόνα, για παράδειγμα, σταθερή ταλαιπωρία, μούχλα και μύκητα στο μπάνιο ή άλλα αρνητικά φαινόμενα, τότε είναι απαραίτητο να ελέγξετε την κατάσταση του συστήματος εξαερισμού.

Πολλά προβλήματα οφείλονται στην έλλειψη μικροσυστοιχιών, που προκαλείται από την τοποθέτηση αεροστεγμένων πλαστικών παραθύρων. Σε αυτή την περίπτωση, πολύ λίγο φρέσκο ​​αέρα εισέρχεται στο σπίτι, είναι απαραίτητο να φροντίσει για την εισροή του.

Οι μπλοκαρίσματα και η αποσυμπίεση των αεραγωγών μπορεί να προκαλέσουν σοβαρά προβλήματα στην απομάκρυνση του αέρα εξαγωγής, ο οποίος είναι κορεσμένος με δυσάρεστες οσμές, καθώς και οι υπερβολικοί υδρατμοί.

Ως αποτέλεσμα, μούχλα και μύκητες μπορούν να εμφανιστούν σε χώρους γραφείων, γεγονός που έχει αρνητικές επιπτώσεις στην υγεία των ανθρώπων και μπορεί να προκαλέσει μια σειρά από σοβαρές ασθένειες.

Αλλά συμβαίνει επίσης ότι τα στοιχεία του συστήματος εξαερισμού λειτουργούν καλά, αλλά τα προβλήματα που περιγράφονται παραπάνω παραμένουν ανεπίλυτα. Ίσως οι υπολογισμοί του συστήματος εξαερισμού για ένα συγκεκριμένο σπίτι ή διαμέρισμα έχουν πραγματοποιηθεί λανθασμένα.

Αρνητικά, ο αερισμός των χώρων μπορεί να επηρεαστεί από την αλλοίωση, τον επανασχεδιασμό, την εμφάνιση των επεκτάσεων, την εγκατάσταση των προαναφερθέντων πλαστικών παραθύρων κλπ.

Σε περίπτωση σημαντικών αλλαγών, δεν επαναφέρει τους υπολογισμούς και εκσυγχρονίσει το υφιστάμενο σύστημα εξαερισμού σύμφωνα με τα νέα δεδομένα.

Ένας απλός τρόπος για να εντοπίσετε προβλήματα με τον εξαερισμό είναι να ελέγξετε την παρουσία έλξης. Στο πλέγμα της θύρας εξάτμισης, πρέπει να φέρετε ένα αναμμένο ζευγάρι ή ένα φύλλο λεπτού χαρτιού.

Δεν είναι απαραίτητο να χρησιμοποιήσετε μια ανοικτή φωτιά για μια τέτοια επιθεώρηση εάν το δωμάτιο χρησιμοποιεί εξοπλισμό θέρμανσης αερίου.

Εάν η φλόγα ή χαρτί σίγουρα εκτρέπεται προς το σχέδιο, το διαθέσιμο ώσης, αν δεν συμβεί ή να απορρίψει αδύναμη, ακανόνιστη, ένα πρόβλημα με την εκτροπή του αέρα των αποβλήτων καθίσταται εμφανής.

Η αιτία μπορεί να είναι η παρεμπόδιση ή η βλάβη στον αγωγό ως αποτέλεσμα ανεπαρκούς επισκευής.

Δεν υπάρχει πάντα η ευκαιρία να εξαλειφθεί η βλάβη, η λύση του προβλήματος είναι συχνά η εγκατάσταση πρόσθετου εξαερισμού. Πριν από την τοποθέτησή τους, δεν βλάπτει να κάνει τους απαραίτητους υπολογισμούς.

Πώς να υπολογίσετε την ανταλλαγή αέρα;

Όλοι οι υπολογισμοί για τα συστήματα εξαερισμού περιορίζονται στον προσδιορισμό του όγκου αέρα στον χώρο. Δεδομένου ότι ένα τέτοιο δωμάτιο μπορεί να θεωρηθεί ως ξεχωριστό δωμάτιο, και το σύνολο των δωματίων σε ένα συγκεκριμένο σπίτι ή διαμέρισμα.

Με βάση αυτά τα δεδομένα, και δεδομένα από κανονιστικών εγγράφων υπολογίζεται βασικές παραμέτρους του συστήματος αερισμού, όπως είναι η διατομή και ο αριθμός των αγωγών, ανεμιστήρες, ισχύς, κλπ

Υπάρχουν εξειδικευμένες μέθοδοι υπολογισμού που σας επιτρέπουν να υπολογίσετε όχι μόνο την ανανέωση των αέριων μαζών σε ένα δωμάτιο, αλλά και την αφαίρεση της θερμικής ενέργειας, τις αλλαγές στην υγρασία, την απομάκρυνση των μολυσματικών ουσιών κ.ο.κ.

Οι υπολογισμοί αυτοί πραγματοποιούνται συνήθως για βιομηχανικά, κοινωνικά ή ειδικά κτίρια.

Αν υπάρχει ανάγκη ή επιθυμία να εκτελεστούν τέτοιοι λεπτομερείς υπολογισμοί, είναι καλύτερο να επικοινωνήσετε με έναν μηχανικό που έχει μελετήσει παρόμοιες τεχνικές. Για τον αυτό-υπολογισμό για χώρους διαβίωσης χρησιμοποιήστε τις ακόλουθες επιλογές:

  • με πολλαπλότητα.
  • υγειονομικά και υγειονομικά πρότυπα ·
  • ανά περιοχή.

Όλες αυτές οι μέθοδοι είναι σχετικά απλές, έχοντας κατανοήσει την ουσία τους, ακόμη και ένας λαϊκός μπορεί να υπολογίσει τις βασικές παραμέτρους του συστήματος εξαερισμού του.

Ο ευκολότερος τρόπος είναι να χρησιμοποιήσετε τους υπολογισμούς της περιοχής. Ο ακόλουθος κανόνας λαμβάνεται ως βάση: κάθε ώρα ένα σπίτι πρέπει να λάβει τρία κυβικά μέτρα καθαρού αέρα ανά τετραγωνικό μέτρο της περιοχής.

Ο αριθμός των ατόμων που ζουν μόνιμα στο σπίτι δεν λαμβάνεται υπόψη.

Ο υπολογισμός των υγειονομικών και υγειονομικών προτύπων είναι επίσης σχετικά απλός. Στην περίπτωση αυτή, οι υπολογισμοί δεν βασίζονται στην έκταση, αλλά στον αριθμό των μονίμων και προσωρινών κατοίκων.

Για κάθε κάτοικο, είναι απαραίτητο να παρέχεται καθαρός αέρας ύψους 60 κυβικών μέτρων ανά ώρα.

Αν το δωμάτιο παρακολουθείται συχνά από προσωρινούς επισκέπτες, τότε για κάθε άτομο πρέπει να προσθέσετε άλλα 20 κυβικά μέτρα ανά ώρα.

Ο υπολογισμός με πολλαπλότητα είναι κάπως πιο περίπλοκος. Κατά την απόδοσή του λαμβάνεται υπόψη ο σκοπός κάθε ξεχωριστού χώρου και οι προδιαγραφές για την πολλαπλότητα της ανταλλαγής αέρα για καθένα από αυτά.

Η βραχύτητα της ανταλλαγής αέρα ονομάζεται συντελεστής που αντικατοπτρίζει την ποσότητα πλήρους αντικατάστασης του αέρα εξαγωγής στο δωμάτιο για μία ώρα. Οι σχετικές πληροφορίες περιέχονται σε ειδικό κανονιστικό πίνακα (SNIP 2.08.01-89 * Οικιστικά κτίρια, παράρτημα. 4).

Υπολογίστε την ποσότητα αέρα που πρέπει να ενημερωθεί μέσα σε μια ώρα, σύμφωνα με τον τύπο:

L = N * V,

  • Ν - τη συχνότητα της ανταλλαγής αέρα ανά ώρα, που λαμβάνεται από τον πίνακα,
  • V - όγκος των χώρων, m3.

Η ένταση του κάθε δωματίου είναι πολύ απλή για να υπολογίσετε, γι 'αυτό πρέπει να πολλαπλασιάσετε την επιφάνεια του δωματίου με το ύψος του. Στη συνέχεια, για κάθε δωμάτιο, ο όγκος της ανταλλαγής αέρα ανά ώρα υπολογίζεται σύμφωνα με τον τύπο που δίνεται παραπάνω.

Ο δείκτης L για κάθε δωμάτιο συνοψίζεται, η τελική τιμή σας επιτρέπει να έχετε μια ιδέα για το πόσο φρέσκο ​​αέρα πρέπει να εισέλθει στο δωμάτιο ανά μονάδα χρόνου.

Φυσικά, η ίδια ποσότητα αέρα πρέπει να αφαιρεθεί μέσω του εξαερισμού. Στην ίδια αίθουσα μην εγκαταστήσετε τόσο τον ανεμιστήρα τροφοδοσίας όσο και τον εξαερισμό.

Συνήθως, η ροή του αέρα γίνεται μέσα από "καθαρά" δωμάτια: ένα υπνοδωμάτιο, ένα βρεφονηπιακό σταθμό, ένα σαλόνι, ένα γραφείο, κλπ.

Αφαιρέστε τον ίδιο αέρα από τα δωμάτια για επίσημη χρήση: μπάνιο, μπάνιο, κουζίνα, κλπ. Αυτό είναι λογικό, επειδή οι δυσάρεστες μυρωδιές που χαρακτηρίζουν αυτά τα δωμάτια δεν εξαπλώνονται στην κατοικία, αλλά εμφανίζονται αμέσως έξω, γεγονός που κάνει τα σπίτια πιο άνετα.

Ως εκ τούτου, στον υπολογισμό, ο κανόνας λαμβάνεται μόνο για τον αέρα τροφοδοσίας ή μόνο για τον εξαερισμό, όπως αντικατοπτρίζεται στον κανονιστικό πίνακα.

Εάν ο αέρας δεν χρειάζεται να τροφοδοτηθεί ή να αφαιρεθεί από ένα συγκεκριμένο δωμάτιο, υπάρχει μια παύλα στο αντίστοιχο κουτί. Για μερικές αίθουσες, η ελάχιστη τιμή της συναλλαγματικής ισοτιμίας είναι ενδεικτική.

Εάν η υπολογιζόμενη τιμή ήταν κάτω από το ελάχιστο, πρέπει να χρησιμοποιηθεί μια πινακοποιημένη τιμή για τους υπολογισμούς.

Φυσικά, μπορεί να υπάρχουν δωμάτια στο σπίτι των οποίων ο σκοπός δεν φαίνεται στον πίνακα. Σε τέτοιες περιπτώσεις, χρησιμοποιούνται τα πρότυπα που υιοθετούνται για τις κατοικίες, i. 3 κυβικά μέτρα ανά τετραγωνικό μέτρο του δωματίου.

Απλά χρειαστεί να πολλαπλασιάσετε την περιοχή του δωματίου κατά 3, η ληφθείσα τιμή λαμβάνεται ως κανονική πολλαπλότητα της ανταλλαγής αέρα.

Όλες οι τιμές της συναλλαγματικής ισοτιμίας του αέρα L πρέπει να στρογγυλοποιούνται προς τα πάνω έτσι ώστε να είναι πολλαπλάσια των πέντε. Τώρα πρέπει να υπολογίσουμε το άθροισμα της συναλλαγματικής ισοτιμίας του αέρα L για τους χώρους μέσω των οποίων ρέει ο αέρας.

Ξεχωρίστε ξεχωριστά τον ρυθμό ανταλλαγής αέρα L των δωματίων από τα οποία αντλείται ο εξαγόμενος αέρας.

Στη συνέχεια, θα πρέπει να συγκρίνετε αυτούς τους δύο δείκτες. Εάν το L στην εισροή αποδειχθεί ότι είναι υψηλότερο από το L για την κουκούλα, τότε είναι απαραίτητο να αυξηθούν οι δείκτες για εκείνους τους χώρους για τους οποίους χρησιμοποιήθηκαν οι ελάχιστες τιμές στους υπολογισμούς.

Παραδείγματα υπολογισμών του όγκου της ανταλλαγής αέρα

Για να υπολογίσετε για το σύστημα εξαερισμού με πολλαπλότητα, πρώτα θα πρέπει να κάνετε μια λίστα με όλες τις εγκαταστάσεις στο σπίτι, καταγράψτε την περιοχή τους και το ύψος των οροφών.

Για παράδειγμα, σε ένα υποθετικό σπίτι υπάρχουν οι εξής προϋποθέσεις:

  • Υπνοδωμάτιο - 27 τ.μ.
  • Καθιστικό - 38 τ.μ.
  • Το γραφείο είναι 18 τ.μ.
  • Παιδικό δωμάτιο - 12 τ.μ.
  • Κουζίνα - 20 τ.μ.
  • Μπάνιο - 3 τ.μ.
  • Μπάνιο - 4 τ.μ.
  • Διάδρομος - 8 τ.μ.

Δεδομένου ότι το ύψος της οροφής σε όλα τα δωμάτια είναι τρία μέτρα, υπολογίστε τους κατάλληλους όγκους αέρα:

  • Υπνοδωμάτιο - 81 m3.
  • Καθιστικό - 114 m 3;
  • Το γραφείο είναι 54 κυβικά μέτρα.
  • Παιδική - 36 m 3;
  • Κουζίνα - 60 m3;
  • Ένα μπάνιο είναι 9 κυβικά μέτρα.
  • Μπάνιο - 12 κυβικά μέτρα.
  • Διάδρομος - 24 κυβικά μέτρα.

Τώρα, χρησιμοποιώντας τον παραπάνω πίνακα, πρέπει να υπολογίσετε τον αερισμό του δωματίου, λαμβάνοντας υπόψη την πολλαπλότητα της ανταλλαγής αέρα, αυξάνοντας κάθε δείκτη σε ένα πολλαπλάσιο του πέντε:

  • Υπνοδωμάτιο - 81 m3 * 1 = 85 m3.
  • Σαλόνι - 38 τ.μ. * 3 = 115 m3;
  • Το γραφείο είναι 54 κυβικά μέτρα. * 1 = 55 κυβικά μέτρα.
  • Παιδικά - 36 m3 * 1 = 40 m3;
  • Κουζίνα - 60 m3. - τουλάχιστον 90 κυβικά μέτρα ·
  • Μπάνιο - 9 κυβικά μέτρα. τουλάχιστον 50 κυβικά μέτρα ·
  • Μπάνιο - 12 κυβικά μέτρα. τουλάχιστον 25 κυβικά μέτρα.

Δεν υπάρχουν πληροφορίες σχετικά με τους κανόνες του διαδρόμου στον πίνακα, επομένως τα στοιχεία για αυτό το μικρό δωμάτιο δεν περιλαμβάνονται στον υπολογισμό. Για το σαλόνι υπολογισμός πραγματοποιείται στην περιοχή, λαμβάνοντας υπόψη τα πρότυπα τρία κυβικά μέτρα. μετρητή ανά τετραγωνικό μέτρο.

Τώρα πρέπει να συνοψίσουμε χωριστά τις πληροφορίες σχετικά με τις εγκαταστάσεις στις οποίες πραγματοποιείται η ροή του αέρα και χωριστά - τους χώρους στους οποίους είναι εγκατεστημένες οι συσκευές εξαερισμού.

Όγκος της ανταλλαγής αέρα στην εισροή:

  • Υπνοδωμάτιο - 81 m3 * 1 = 85 m3 / h.
  • Καθιστικό - 38 τ.μ. * 3 = 115 m3 / h;
  • Το γραφείο είναι 54 κυβικά μέτρα. * 1 = 55 κυβικά μέτρα ανά ώρα.
  • Παιδικά - 36 m3 * 1 = 40 m3 / h;

Σύνολο: 295 m3 / h.

Ο όγκος της ανταλλαγής αέρα για την κουκούλα:

  • Κουζίνα - 60 m3. - τουλάχιστον 90 m3 / h ·
  • Μπάνιο - 9 κυβικά μέτρα. - τουλάχιστον 50 m3 / h ·
  • Μπάνιο - 12 κυβικά μέτρα. - τουλάχιστον 25 m3 / h.

Σύνολο: 165 m3 / h.

Τώρα πρέπει να συγκρίνουμε τα εισπραχθέντα ποσά. Προφανώς, η απαραίτητη εισροή υπερβαίνει την κουκούλα κατά 130 m3 / h (295 m3 / h-165 m3 / h).

Για να εξαλειφθεί αυτή η διαφορά, είναι απαραίτητο να αυξηθεί ο όγκος της ανταλλαγής αέρα με το τέντωμα, για παράδειγμα, με την αύξηση των δεικτών στην κουζίνα. Μετά τις αλλαγές, τα αποτελέσματα υπολογισμού θα μοιάζουν με αυτό:

Όγκος ανταλλαγής αέρα από εισροή:

  • Υπνοδωμάτιο - 81 m3 * 1 = 85 m3 / h.
  • Καθιστικό - 38 τ.μ. * 3 = 115 m3 / h;
  • Το γραφείο είναι 54 κυβικά μέτρα. * 1 = 55 κυβικά μέτρα ανά ώρα.
  • Παιδικά - 36 m3 * 1 = 40 m3 / h;

Σύνολο: 295 m3 / h.

Ο όγκος της ανταλλαγής αέρα για την κουκούλα:

  • Κουζίνα - 60 m3. - 220 m3 / h.
  • Μπάνιο - 9 κυβικά μέτρα. - τουλάχιστον 50 m3 / h ·
  • Μπάνιο - 12 κυβικά μέτρα. - τουλάχιστον 25 m3 / h.

Σύνολο: 295 m3 / h.

Οι όγκοι εισροής και εξάτμισης είναι ίσοι, που αντιστοιχούν στις απαιτήσεις για τον υπολογισμό της ανταλλαγής αέρα με πολλαπλότητα.

Ο υπολογισμός της ανταλλαγής αέρα σύμφωνα με τα πρότυπα υγιεινής είναι πολύ ευκολότερος. Ας υποθέσουμε ότι στο σπίτι που εξετάστηκε παραπάνω, δύο άτομα διαμένουν μόνιμα και δύο παραμένουν στο εσωτερικό ακανόνιστα.

Ο υπολογισμός πραγματοποιείται ξεχωριστά για κάθε δωμάτιο σύμφωνα με το πρότυπο 60 κυβικών μέτρων ανά άτομο για μόνιμους κατοίκους και 20 κυβικά μέτρα ανά ώρα για τους προσωρινούς επισκέπτες:

  • Υπνοδωμάτιο - 2 άτομα * 60 = 120 κυβικά μέτρα ανά ώρα.
  • Το γραφείο - 1 άτομο * 60 = 60 m3 / ώρα.
  • Καθιστικό 2 άτομα * 60 + 2 άτομα * 20 = 160 κυβικά μέτρα ανά ώρα.
  • Παιδιά 1 άτομο * 60 = 60 m3 / h.

Σύνολο κατά μήκος του παραπόταμου - 400 m3 / h.

Για τον αριθμό των μόνιμων και προσωρινών κατοίκων του σπιτιού δεν υπάρχουν αυστηροί κανόνες, τα στοιχεία αυτά καθορίζονται με βάση την πραγματική κατάσταση και την κοινή λογική.

Η κουκούλα υπολογίζεται σύμφωνα με τους κανόνες που παρατίθενται στον παραπάνω πίνακα και αυξάνεται στο συνολικό ρυθμό εισροής:

  • Κουζίνα - 60 m3. - 300 m3 / h.
  • Μπάνιο - 9 κυβικά μέτρα. - τουλάχιστον 50 m3 / h ·
  • Μπάνιο - 12 κυβικά μέτρα. - τουλάχιστον 50 m3 / h.

Σύνολο για την κουκούλα: 400 m3 / h.

Αυξημένη ανταλλαγή αέρα για την κουζίνα και το μπάνιο. Ο ανεπαρκής όγκος των καυσαερίων μπορεί να χωριστεί μεταξύ όλων των χώρων στους οποίους είναι εγκατεστημένος ο εξαερισμός.

Ή να αυξήσετε αυτόν τον δείκτη μόνο για ένα δωμάτιο, όπως έγινε στον υπολογισμό των πολλαπλάτων.

Σύμφωνα με τους κανόνες υγιεινής, η ανταλλαγή αέρα υπολογίζεται με αυτό τον τρόπο. Ας πούμε ότι η οικία είναι 130 τ.μ.

Στη συνέχεια, ο εναλλάκτης αέρα κατά μήκος του παραπόταμου πρέπει να είναι 130 τ.μ. * 3 κυβικά μέτρα / ώρα = 390 κυβικά μέτρα / ώρα.

Παραμένει η διανομή αυτού του όγκου στις εγκαταστάσεις της κουκούλας, για παράδειγμα, έτσι:

  • Κουζίνα - 60 m3. - 290 m3 / h.
  • Μπάνιο - 9 κυβικά μέτρα. - τουλάχιστον 50 m3 / h ·
  • Μπάνιο - 12 κυβικά μέτρα. - τουλάχιστον 50 m3 / h.

Σύνολο για την κουκούλα: 390 m3 / h.

Η ισορροπία της ανταλλαγής αέρα είναι ένας από τους κύριους δείκτες στο σχεδιασμό των συστημάτων εξαερισμού. Περαιτέρω υπολογισμοί εκτελούνται με βάση αυτές τις πληροφορίες.

Πώς να επιλέξετε το τμήμα του αεραγωγού;

Το σύστημα εξαερισμού, όπως είναι γνωστό, μπορεί να είναι κανάλι ή μη κανάλι. Στην πρώτη περίπτωση, είναι απαραίτητο να επιλέξετε τη σωστή διατομή των καναλιών.

Εάν αποφασιστεί η εγκατάσταση σχεδίων με ορθογώνια διατομή, ο λόγος του μήκους και του πλάτους τους θα πρέπει να προσεγγίζει το 3: 1.

Η ταχύτητα των κινούμενων αέριων μαζών κατά μήκος της κύριας οδού πρέπει να είναι περίπου πέντε μέτρα ανά ώρα, και στα κλαδιά - μέχρι τρία μέτρα ανά ώρα.

Αυτό θα εξασφαλίσει τη λειτουργία του συστήματος με ελάχιστο θόρυβο. Η ταχύτητα της κίνησης του αέρα εξαρτάται σε μεγάλο βαθμό από την περιοχή διατομής του αγωγού.

Για να βρείτε τις διαστάσεις της δομής, μπορείτε να χρησιμοποιήσετε ειδικούς πίνακες υπολογισμού. Σε έναν τέτοιο πίνακα είναι απαραίτητο να επιλέξετε την ένταση της εναλλαγής αέρα στα αριστερά, για παράδειγμα 400 m3 / h, και από την κορυφή να επιλέξετε την τιμή ταχύτητας - πέντε μέτρα ανά ώρα.

Στη συνέχεια θα πρέπει να βρείτε τη διασταύρωση της οριζόντιας γραμμής μέσω της ανταλλαγής αέρα με την κάθετη γραμμή σε ταχύτητα.

Από αυτό το σημείο τομής, σύρετε μια γραμμή κάτω σε μια καμπύλη κατά μήκος της οποίας μπορεί να καθοριστεί μια κατάλληλη διατομή. Για έναν ορθογώνιο αγωγό, αυτή θα είναι η τιμή της περιοχής, και για έναν στρογγυλό αγωγό, η διάμετρος σε χιλιοστά.

Πρώτον, οι υπολογισμοί γίνονται για τον κύριο αγωγό, και στη συνέχεια για τους κλάδους.

Έτσι, οι υπολογισμοί γίνονται μόνο εάν σχεδιαστεί μόνο ένας αγωγός εξαγωγής στο σπίτι. Αν πρέπει να εγκατασταθούν αρκετοί αγωγοί εξαγωγής, τότε ο συνολικός όγκος του αγωγού εξαγωγής πρέπει να διαιρείται με τον αριθμό των καναλιών και κατόπιν οι υπολογισμοί πραγματοποιούνται σύμφωνα με την παραπάνω αρχή.

Επιπλέον, υπάρχουν εξειδικευμένα προγράμματα υπολογισμού με τα οποία μπορείτε να εκτελέσετε τέτοιους υπολογισμούς. Για τα διαμερίσματα και τα σπίτια, τέτοια προγράμματα μπορούν ακόμη και να είναι πιο βολικά, δεδομένου ότι παρέχουν ένα πιο ακριβές αποτέλεσμα.

Χρήσιμο βίντεο για το θέμα

Χρήσιμες πληροφορίες σχετικά με τις αρχές του συστήματος εξαερισμού περιλαμβάνονται σε αυτό το βίντεο:

Μαζί με τον εξαντλημένο αέρα, το σπίτι αφήνει επίσης θερμότητα. Εδώ, ο υπολογισμός των απωλειών θερμότητας που συνδέονται με τη λειτουργία του συστήματος εξαερισμού αποδεικνύεται σαφώς:

Ο σωστός υπολογισμός του εξαερισμού - η βάση της ασφαλούς λειτουργίας του και η εγγύηση ενός ευνοϊκού μικροκλίματος στο σπίτι ή στο διαμέρισμα. Η γνώση των βασικών παραμέτρων στις οποίες βασίζονται αυτοί οι υπολογισμοί θα επιτρέψει όχι μόνο να σχεδιαστεί σωστά το σύστημα εξαερισμού κατά την κατασκευή, αλλά και να προσαρμοστεί η κατάσταση του, εάν αλλάξουν οι συνθήκες.

Παράδειγμα υπολογισμού του εξαερισμού για βιομηχανικούς χώρους

Πώς γίνεται ο υπολογισμός

Εάν υπάρχει μία ή περισσότερες τοπικές πηγές εκπομπής ρύπων στην αίθουσα παραγωγής, τότε είναι καλύτερο να συλλαμβάνονται και να απομακρύνονται αυτές οι ουσίες απευθείας από το σημείο της απελευθέρωσής τους. Τέτοιες πηγές είναι συχνά διαφορετικοί τεχνολογικοί εξοπλισμοί ή χωρητικότητα. Για να συλλαμβάνουν επιβλαβείς αναθυμιάσεις ή αέρια από αυτά, συνήθως χρησιμοποιούνται τοπικές αντλίες ομπρελών. Μερικοί προμηθευτές εξοπλισμού ολοκληρώνουν τα προϊόντα τους με συσκευές αναρρόφησης των απαιτούμενων μεγεθών, χρειάζεται μόνο να εκτελέσετε τον υπολογισμό των αεραγωγών και να τους μεταφέρετε στη μονάδα επεξεργασίας. Σε άλλες περιπτώσεις, η διάταξη εξάτμισης υπολογίζεται και κατασκευάζεται χρησιμοποιώντας το σχήμα.

Για τον υπολογισμό του εξαερισμού ενός χώρου παραγωγής, απαιτούνται τα ακόλουθα ακατέργαστα δεδομένα:

  • διαστάσεις της πηγής εκπομπών (a x b) ή της διαμέτρου (δ) της.
  • ταχύτητα κίνησης του αέρα στη ζώνη εκκένωσης (θc).
  • ταχύτητα αναρρόφησης στην ευθυγράμμιση της ομπρέλας (θζ).
  • το ύψος της συσκευής πάνω από την πηγή (z).

Όταν σχεδιάζετε μια ομπρέλα, θα πρέπει να λαμβάνεται υπόψη ότι η αποτελεσματικότητα της λειτουργίας της εξαρτάται από το ύψος της εγκατάστασης πάνω από την πηγή (z), οπότε είναι απαραίτητο να ρυθμίσουμε την αναρρόφηση όσο το δυνατόν χαμηλότερα. Οι συνολικές διαστάσεις της συσκευής υπολογίζονται από τους τύπους:

Α = α + 0.8z, Β = b + 0.8z, για στρογγυλεμένες μονάδες αναρρόφησης D = d + 0.8z.

Ταυτόχρονα, η γωνία ανοίγματος της ομπρέλας δεν πρέπει να υπερβαίνει τους 60º, διαφορετικά θα σχηματιστούν στάσιμες ζώνες κατά μήκος των άκρων της και η αποτελεσματικότητα της λειτουργίας θα μειωθεί σημαντικά. Όταν η ταχύτητα των αέριων μαζών στο κατάστημα (θ) είναι μεγαλύτερη από 0,4 m / s, η τοπική αναρρόφηση τροφοδοτείται από τις 3 πλευρές με καλύμματα φτερών που προστατεύουν την προς τα πάνω ροή αέρα εξαερισμού από εξωτερική επίδραση. Η ταχύτητα αναρρόφησης (θs) λαμβάνεται σύμφωνα με τον πίνακα, ανάλογα με τον αριθμό των ποδιού:

Αφού αναπτυχθεί ο σχεδιασμός της συσκευής αναρρόφησης και προσδιοριστούν οι συνολικές διαστάσεις της, υπολογίζεται η ποσότητα του αέρα εξαγωγής, το αποτέλεσμά της πρέπει να λαμβάνεται υπόψη στην περαιτέρω ανάπτυξη του εξαερισμού του χώρου.

L = 3600 θ × S3, όπου:

  • θ3 - ταχύτητα ροής στην ευθυγράμμιση της ομπρέλας, υιοθετείται σύμφωνα με τον πίνακα.
  • L - απαιτούμενη ροή αέρα, m3 / h.
  • Το S3 είναι η περιοχή του ανοίγματος εργασίας, που ορίζεται ως A x B ή 0.785 D για το στρογγυλό σχήμα της ομπρέλας, m2.

Υπολογισμός της γενικής ανταλλαγής της παροχής και εξαερισμού

Η ανάπτυξη και ο σχεδιασμός του εξαερισμού των βιομηχανικών εγκαταστάσεων αρχίζει με τον εντοπισμό πηγών που εκπέμπουν επιβλαβείς, εύφλεκτες ή εκρηκτικές ουσίες. Στη συνέχεια, πραγματοποιείται ένας υπολογισμός, ο σκοπός του οποίου είναι ο προσδιορισμός της κατανάλωσης καυσαερίων και παροχής αέρα για την απομάκρυνση επιβλαβών ουσιών και την τήρηση των κανονικών συνθηκών εργασίας για τους ανθρώπους. Η απλούστερη περίπτωση είναι όταν οι βλαβερές ουσίες δεν απελευθερώνονται κατά τη διαδικασία. Στη συνέχεια, πρέπει να υπολογίσετε την ποσότητα του μείγματος φρέσκου αέρα που απαιτείται για τους ανθρώπους σύμφωνα με τους κανόνες υγιεινής:

L = N × m

  • L - την απαιτούμενη ποσότητα αέρα, m3 / h.
  • N - αριθμός ατόμων που εργάζονται στον ιστότοπο.
  • m είναι η ειδική κατανάλωση καθαρού αέρα ανά άτομο ανά ώρα.

Η ειδική κατανάλωση είναι μια τυποποιημένη τιμή, σύμφωνα με το SNiP "θέρμανση και εξαερισμός", για τα κτίρια με δυνατότητα αερισμού είναι 30 m3 / h για 1 άτομο, χωρίς εξαερισμό - 60 m3 / h για 1 άτομο.

Με την παρουσία επιβλαβών εκπομπών, ο σχεδιασμός του αερισμού είναι να αναπτυχθεί ένα σύστημα για την εξάλειψη αυτών των κινδύνων από την περιοχή εργασίας και την παροχή καθαρού επεξεργασμένου αέρα σε αυτό. Η κατάσταση με τοπικές πηγές έχει συζητηθεί παραπάνω, αλλά με πολλές τεχνολογικές διεργασίες, η κατανομή είναι διασκορπισμένη σε όλη την περιοχή του τόπου, είναι αδύνατο να το καλύψει με όλα τα τοπικά αποσπάσματα.

Με τη συνεχή κατανομή επιβλαβών ουσιών σε όλη την περιοχή παραγωγής, το έργο είναι να αραιώνεται η συγκέντρωσή τους στον αέρα της περιοχής εργασίας και στη συνέχεια να αφαιρείται με συστήματα εξαερισμού.

Για κάθε τύπο ουσίας, η παρουσία του οποίου στο χώρο του δωματίου μπορεί να βλάψει την ανθρώπινη υγεία, οι κανόνες ορίζουν τις μέγιστες επιτρεπόμενες συγκεντρώσεις (MPC). Αυτά τα δεδομένα είναι διαθέσιμα στο κοινό και περιέχονται στη σχετική βιβλιογραφία αναφοράς. Ότι η συγκέντρωση βλαπτικότητας στο κατάστημα δεν υπερβαίνει τις κανονικοποιημένες τιμές, ο καθαρός αέρας πρέπει να τροφοδοτείται προς τα μέσα, το ποσό του υπολογίζεται σύμφωνα με τον τύπο:

L = Μν / (υνομ-υη), όπου:

  • L - η απαιτούμενη ποσότητα καθαρού αέρα για την εισροή, m3 / h.
  • MB - η μάζα της ύλης που απελευθερώνεται στο διάστημα ανά μονάδα χρόνου, mg / h.
  • yp - η ειδική συγκέντρωσή του στον όγκο του καταστήματος ή του τμήματος, mg / m3.
  • yn είναι η συγκέντρωση της ίδιας ουσίας στον εισερχόμενο αέρα, mg / m3.

Όταν υπάρχουν πολλοί κίνδυνοι στο δωμάτιο, ο σκοπός του υπολογισμού του εξαερισμού είναι να καθοριστεί η ποσότητα εισροής για καθένα από αυτά. Στη συνέχεια, όλα τα αποτελέσματα συνοψίζονται και λαμβάνεται ο συνολικός όγκος αέρα, ο οποίος πρέπει να υποχρεωθεί να τροφοδοτήσει τη ζώνη εργασίας του καταστήματος με ένα σύστημα παροχής αέρα. Η ίδια ποσότητα μολυσμένου αέρα πρέπει να αφαιρεθεί χρησιμοποιώντας κουκούλα. Εάν υπάρχει τοπική αναρρόφηση στο εργαστήριο, τότε η ροή του αέρα εξαγωγής σε καθένα από αυτά θα πρέπει να προστεθεί στο συνολικό όγκο εισροής για να διατηρηθεί το ισοζύγιο αέρα.

Οι υπολογισμοί που παρουσιάζονται μπορούν να είναι χρήσιμοι για την προκαταρκτική επιλογή του εξοπλισμού εξαερισμού και για τον αυξημένο υπολογισμό του κόστους. Μια ακριβέστερη και λεπτομερής κατανόηση του θέματος εμφανίζεται στη διαδικασία σχεδιασμού ενός αντικειμένου, που εκτελείται από ειδικούς.

Υπολογισμός του συστήματος εξαερισμού στο χώρο παραγωγής

Η ποιότητα του ατμοσφαιρικού περιβάλλοντος στα καταστήματα ρυθμίζεται από τη νομοθεσία, τα πρότυπα καθορίζονται σε SNiP και TB. Στα περισσότερα αντικείμενα, η αποτελεσματική ανταλλαγή αέρα δεν μπορεί να διαμορφωθεί μέσω φυσικού συστήματος και πρέπει να εγκατασταθεί εξοπλισμός. Είναι σημαντικό να επιτευχθούν κανονιστικοί δείκτες. Για το σκοπό αυτό εκτελείται ο εξαερισμός τροφοδοσίας και εξάτμισης του χώρου παραγωγής.

Οι κανονισμοί προβλέπουν διάφορους τύπους ρύπανσης:

  • υπερβολική θερμότητα από την εργασία μηχανών και μηχανισμών.
  • την εξάτμιση στην οποία περιέχονται επιβλαβείς ουσίες ·
  • υπερβολική υγρασία.
  • διάφορα αέρια ·
  • ανθρώπινες εκκρίσεις.

Η διαδικασία υπολογισμού για τον αερισμό βιομηχανικών χώρων προσφέρει μια ανάλυση για κάθε είδος ρύπανσης. Τα αποτελέσματα δεν συνοψίζονται, αλλά η εργασία έχει τη μεγαλύτερη αξία. Έτσι, εάν στην παραγωγή απαιτείται ο μέγιστος όγκος για την απομάκρυνση της πλεονάζουσας θερμότητας, αυτός είναι ο δείκτης που χρησιμοποιείται για τον υπολογισμό των τεχνικών παραμέτρων της δομής. Ας δούμε ένα παράδειγμα υπολογισμού του εξαερισμού μιας αίθουσας παραγωγής με επιφάνεια 100 m 2.

Ανταλλαγή αέρα στην βιομηχανική περιοχή, με εμβαδόν 100 m 2

Το σύστημα εξαερισμού στην παραγωγή πρέπει να εκτελεί τις ακόλουθες λειτουργίες:

  1. για την απομάκρυνση επιβλαβών ουσιών.
  2. καθαρίστε το περιβάλλον μόλυνσης.
  3. Αφαιρέστε την περίσσεια υγρασίας.
  4. για την εξάλειψη των επιβλαβών εκπομπών από το κτίριο.
  5. ρυθμίζει το καθεστώς θερμοκρασίας.
  6. για να σχηματίσουν μια εισροή καθαρής ροής.
  7. ανάλογα με τα χαρακτηριστικά του χώρου και τις καιρικές συνθήκες, να θερμαίνει ή να ψύχει τον εισερχόμενο αέρα.

Δεδομένου ότι κάθε λειτουργία απαιτεί πρόσθετη ισχύ από τη δομή εξαερισμού, συνεπώς, η επιλογή του εξοπλισμού πρέπει να γίνεται με όλους τους δείκτες που λαμβάνονται υπόψη.

Τοπική εξάτμιση

Εάν στις τεχνολογικές διαδικασίες παραγωγής σε έναν από τους τόπους υπάρχουν εκπομπές επιβλαβών ουσιών, τότε δίπλα στην πηγή, σύμφωνα με τους κανονισμούς, είναι απαραίτητο να δημιουργηθεί μια τοπική εξάτμιση. Έτσι η απομάκρυνση θα είναι πιο αποτελεσματική.

Πιο συχνά αυτή η πηγή είναι οι τεχνολογικές δεξαμενές. Για τέτοιου είδους αντικείμενα, χρησιμοποιούνται ειδικές εγκαταστάσεις - αντλίες αναρρόφησης με ομπρέλες. Οι διαστάσεις και η ισχύς υπολογίζονται χρησιμοποιώντας τις ακόλουθες παραμέτρους:

  • διαστάσεις πηγής ανάλογα με το σχήμα: μήκος πλευρών (a * b) ή διάμετρος (d).
  • ταχύτητα ροής στη ζώνη προέλευσης (vv).
  • ταχύτητα αναρρόφησης της μονάδας (v3).
  • το ύψος της θέσης αναρρόφησης πάνω από τη δεξαμενή (z).

Οι πλευρές της ορθογώνιας αναρρόφησης υπολογίζονται από τον τύπο:
Α = α + 0.8z,
όπου A είναι η πλευρά αναρρόφησης, a είναι η πλευρά της δεξαμενής και z είναι η απόσταση μεταξύ της πηγής και της συσκευής.

Οι πλευρές της στρογγυλής διάταξης υπολογίζονται με τον τύπο:
D = d + 0.8z,
όπου Δ - διάμετρος της συσκευής, d - διάμετρος της πηγής, z - απόσταση μεταξύ της αναρρόφησης και της δεξαμενής.

Το εκχύλισμα έχει κατά προτίμηση τη μορφή κώνου, η γωνία του οποίου δεν πρέπει να υπερβαίνει τους 60 βαθμούς. Εάν στο κατάστημα η ταχύτητα μάζας είναι μεγαλύτερη από 0,4 m / s, τότε η συσκευή θα πρέπει να έχει ολοκληρωθεί με ποδιά. Η ποσότητα του αέρα εξαγωγής καθορίζεται σύμφωνα με τον τύπο:
L = 3600 V * Sa,
όπου L - ροή αέρα σε m3 / h, v3 - ταχύτητα ροής στην κουκούλα, Sa - περιοχή εργασίας της αναρρόφησης.

Συνολικός εξαερισμός

Όταν γίνεται ο υπολογισμός της τοπικής εκχύλισης, πραγματοποιούνται τύποι και όγκοι μόλυνσης, είναι δυνατόν να γίνει μια μαθηματική ανάλυση του απαιτούμενου όγκου ανταλλαγής αέρα. Η απλούστερη επιλογή είναι όταν δεν υπάρχουν τεχνολογικές ακαθαρσίες στην περιοχή και λαμβάνονται υπόψη μόνο οι εκπομπές από τον άνθρωπο.

Στην περίπτωση αυτή, στόχος είναι να επιτευχθούν υγειονομικά πρότυπα και καθαρές διαδικασίες παραγωγής. Το απαιτούμενο ποσό για τους εργαζομένους υπολογίζεται με τον τύπο:
L = Ν * m,
όπου L είναι η ποσότητα αέρα σε m 3 / ώρα, N είναι ο αριθμός των εργαζομένων, m είναι ο όγκος αέρα ανά άτομο για μία ώρα. Η τελευταία παράμετρος κανονικοποιείται από το SNiP και είναι 30 m 3 / ώρα - σε ένα αεριζόμενο κατάστημα, 60 m 3 / ώρα - σε κλειστό.

Εάν υπάρχουν επιβλαβείς πηγές, τότε το καθήκον του συστήματος εξαερισμού για τη μείωση της ρύπανσης για τον περιορισμό των προτύπων (MPC). Η μαθηματική ανάλυση πραγματοποιείται χρησιμοποιώντας τον τύπο:
O = Mg (K0-Kn),
όπου O είναι η ροή του αέρα, Mv είναι η μάζα των βλαβερών ουσιών που εκλύονται στον αέρα σε 1 ώρα, K0 είναι η συγκέντρωση επιβλαβών ουσιών, Kp είναι ο αριθμός των προσμείξεων στην εισροή.

Το ίδιο υπολογίζεται και η εισροή ρύπων, γι 'αυτό χρησιμοποιώ τον ακόλουθο τύπο:
L = Mv / (yome-yn),
όπου το L - εισροή όγκο σε m3 / h, Mw - τιμή βάρους των επιβλαβών ουσιών που εκπέμπονται στο κατάστημα σε mg / hr ypom - ειδική συγκέντρωση ρύπων σε m3 / h, Yn - τη συγκέντρωση των ρύπων από τον αέρα τροφοδοσίας.

Ο υπολογισμός του γενικού αερισμού των βιομηχανικών εγκαταστάσεων δεν εξαρτάται από την έκτασή του, άλλοι παράγοντες είναι σημαντικοί εδώ. Η μαθηματική ανάλυση για ένα συγκεκριμένο αντικείμενο είναι περίπλοκη, πρέπει να λάβει υπόψη πολλά δεδομένα και μεταβλητές, πρέπει να χρησιμοποιήσετε ειδική βιβλιογραφία και πίνακες.

Εξαερισμός με καθαρό αέρα

Υπολογισμός του εξαερισμού των βιομηχανικών εγκαταστάσεων είναι σκόπιμο να ασκούν τις ολοκληρωμένες δείκτες, που εκφράζουν την ροή του εισερχόμενου αέρα ανά μονάδα όγκου ενός δωματίου, για 1 άτομο ή 1 πηγή μόλυνσης. Τα πρότυπα ορίζουν τα δικά τους πρότυπα για τις διάφορες βιομηχανίες.

Ο τύπος έχει ως εξής:
L = Vk
όπου L είναι ο όγκος του αέρα τροφοδοσίας σε m 3 / h, V είναι ο όγκος του χώρου σε m 3, k είναι η συναλλαγματική ισοτιμία του αέρα.
Για ένα δωμάτιο με επιφάνεια 100 m 3 και ύψος 3 m για αλλαγή αέρα 3 φορές, θα χρειαστεί: 100 * 3 * 3 + = 900 m 3 / h.

Ο υπολογισμός του εξαερισμού των βιομηχανικών εγκαταστάσεων πραγματοποιείται μετά τον προσδιορισμό των αναγκαίων όγκων μάζας αέρα προσαγωγής. Οι παράμετροί τους θα πρέπει να είναι παρόμοιες, οπότε για ένα αντικείμενο με επιφάνεια 100 m 3 με ύψος οροφής 3 μέτρα και τριπλό ανταλλακτικό, το σύστημα εξάτμισης πρέπει να αντλεί τα ίδια 900 m 3 / ώρα.

Υπολογισμός των συστημάτων εξαερισμού

Αεροπορικές επιδόσεις

Ο υπολογισμός του συστήματος εξαερισμού αρχίζει με τον προσδιορισμό της παροχής αέρα (ανταλλαγή αέρα), μετρούμενη σε κυβικά μέτρα ανά ώρα. Για τους υπολογισμούς θα χρειαστούμε ένα σχέδιο της εγκατάστασης, όπου θα αναφέρονται τα ονόματα (προορισμοί) και οι περιοχές όλων των χώρων.

Σερβίρουμε φρέσκο ​​αέρα απαιτείται μόνο σε αυτές τις αίθουσες, όπου οι άνθρωποι μπορούν να μείνουν για μεγάλο χρονικό διάστημα.. κρεβατοκάμαρες, σαλόνια, γραφεία, κ.λπ. Οι αεροδιάδρομοι που δεν εξυπηρετούνται και η κουζίνα και τα μπάνια απομακρύνεται μέσω των απαγωγών. Έτσι, η εναέρια κυκλοφορία της ροής του αέρα θα είναι ως εξής: φρέσκο ​​αέρα που τροφοδοτείται προς τους χώρους διαμονής, εκεί (ήδη μερικώς μολυσμένο) εισέρχεται στο διάδρομο, από το διάδρομο - σε μπάνια και κουζίνα, όπου απομακρύνεται μέσω του συστήματος εξαερισμού, παίρνοντας μαζί τους δυσάρεστες οσμές και ρύπων. Αυτό το κύκλωμα ροής του αέρα παρέχει τέλμα αέρα «βρώμικο» δωμάτια, εξαλείφοντας την πιθανότητα εξάπλωσης των οσμών στο διαμέρισμα ή εξοχικό.

Για κάθε σαλόνι, καθορίζεται ο όγκος του παρεχόμενου αέρα. Ο υπολογισμός διεξάγεται συνήθως σύμφωνα με το SNiP 41-01-2003 και το MGSN 3.01.01. Δεδομένου ότι η SNiP θέτει αυστηρότερες απαιτήσεις, στους υπολογισμούς θα καθοδηγηθεί από αυτό το έγγραφο. Λέει ότι για χώρους χωρίς φυσικό αερισμό (δηλαδή όπου τα παράθυρα δεν ανοίγουν), η ροή του αέρα πρέπει να είναι τουλάχιστον 60 m³ / h ανά άτομο. Υπνοδωμάτιο μερικές φορές χρησιμοποιούν μια χαμηλότερη τιμή - 30 m³ / h ανά άτομο, όπως σε κατάσταση ύπνου ένα άτομο καταναλώνει λιγότερο οξυγόνο (είναι επιτρεπτή για MGSN και κόψτε για χώρους με φυσικό αερισμό). Ο υπολογισμός λαμβάνει υπόψη μόνο τους ανθρώπους που βρίσκονται στο δωμάτιο για μεγάλο χρονικό διάστημα. Για παράδειγμα, αν είστε στο σαλόνι μια-δυο φορές το χρόνο θα σε μεγάλη εταιρεία, θα αυξήσει την απόδοση εξαερισμού, επειδή δεν χρειάζονται. Αν θέλετε οι επισκέπτες να αισθάνονται άνετα, μπορείτε να εγκαταστήσετε ένα σύστημα VAV, το οποίο σας επιτρέπει να ρυθμίζετε ξεχωριστά τη ροή του αέρα σε κάθε δωμάτιο. Με αυτό το σύστημα, μπορείτε να αυξήσετε την ανταλλαγή αέρα στο σαλόνι μειώνοντάς την στο υπνοδωμάτιο και σε άλλα δωμάτια.

Μετά τον υπολογισμό της ανταλλαγής αέρα για τον άνθρωπο, πρέπει να υπολογίσουμε την ανταλλαγή αέρα με πολλαπλότητα (αυτή η παράμετρος δείχνει πόσες φορές σε ένα δωμάτιο υπάρχει μια πλήρης αλλαγή αέρα στον χώρο). Για να διασφαλιστεί ότι ο αέρας δεν παραμένει στάσιμος, είναι απαραίτητο να παρέχεται τουλάχιστον μία ενιαία ανταλλαγή αέρα.

Έτσι, προκειμένου να προσδιοριστεί η απαιτούμενη ροή αέρα, πρέπει να υπολογίσουμε δύο τιμές ανταλλαγής αέρα: αριθμός ατόμων και επάνω πολλαπλότητας και στη συνέχεια επιλέξτε μεγαλύτερη από αυτές τις δύο τιμές:

  1. Υπολογισμός της ανταλλαγής αέρα ανά αριθμό ατόμων:

  • σε κατάσταση ηρεμίας (ύπνος); 30 m³ / h.
  • τυπική τιμή (σύμφωνα με το SNIP); 60 m³ / h.
  • Υπολογισμός της ανταλλαγής αέρα σε πολλαπλότητα:

    Έχοντας υπολογίσει την απαραίτητη ανταλλαγή αέρα για κάθε δωμάτιο που εξυπηρετείται και συνδυάζοντας τις τιμές που λαμβάνονται, μαθαίνουμε τη συνολική απόδοση του συστήματος εξαερισμού. Για αναφορά, τυπικές τιμές απόδοσης των συστημάτων εξαερισμού:

    • Για μεμονωμένα δωμάτια και διαμερίσματα; από 100 έως 500 m³ / h,
    • Για σπίτια; από 500 έως 2000 m³ / h.
    • Για τα γραφεία; από 1000 έως 10.000 m³ / h.

    Υπολογισμός του δικτύου διανομής αέρα

    Μετά τον προσδιορισμό της απόδοσης αερισμού μπορεί να προχωρήσει στο σχεδιασμό του δικτύου διανομής αέρα το οποίο αποτελείται από αγωγούς, εξαρτήματα (προσαρμογείς, πλήμνες, στροφές), βαλβίδες γκαζιού και βαλβίδες αέρα (πλέγματα ή διαχύτες). Ο υπολογισμός του δικτύου διανομής αέρα αρχίζει με την εκπόνηση ενός σχεδίου αεραγωγών. Σχήμα συνιστά τέτοιο τρόπο ώστε στο ελάχιστο συνολικό μήκος του συστήματος εξαερισμού διαδρομή θα μπορούσε να εξυπηρετήσει το προβλεπόμενο ποσό του αέρα σε όλους τους χώρους που εξυπηρετούνται. Περαιτέρω, σύμφωνα με αυτό το σχήμα, οι διαστάσεις των αεραγωγών υπολογίζονται και επιλέγονται οι διανομείς αέρα.

    Υπολογισμός των διαστάσεων των αεραγωγών

    Για να υπολογίσουμε τις διαστάσεις (διατομή) των αγωγών, πρέπει να γνωρίζουμε τον όγκο αέρα που διέρχεται από τον αγωγό σε μια μονάδα χρόνου, καθώς και τη μέγιστη επιτρεπτή ταχύτητα αέρα στον αγωγό. Με την αύξηση της ταχύτητας του αέρα, οι διαστάσεις των αεραγωγών μειώνονται, αλλά το επίπεδο θορύβου και η αντίσταση δικτύου αυξάνονται. Στην πράξη, η ταχύτητα διαμερίσματα και κατοικίες αέρα στον αγωγό για να περιορίσει το επίπεδο των 3-4 m / s, διότι σε υψηλότερες ταχύτητες θόρυβος αέρα από την κίνησή του στους αγωγούς και διανομείς μπορεί να γίνει πολύ σημαντικό.

    Θα πρέπει επίσης να ληφθεί υπόψη ότι η χρήση «ήσυχη» αγωγούς χαμηλής ταχύτητας μεγάλη διατομή δεν είναι πάντα δυνατή, διότι είναι δύσκολο να τοποθετήσει στο κενό χώρο της οροφής. Για να μειωθεί το ύψος της οροφής άκυρη επιτρέπει τη χρήση ορθογώνιων αγωγών, οι οποίες βρίσκονται στο ίδιο εμβαδόν διατομής έχει ένα μικρότερο ύψος από στρογγυλό (π.χ., κυκλική αγωγού με διάμετρο 160 mm, έχει το ίδιο εμβαδόν διατομής με το ορθογώνιο μέγεθος των 200 × 100 mm). Ταυτόχρονα, η τοποθέτηση ενός δικτύου στρογγυλών εύκαμπτων αγωγών είναι ευκολότερη και ταχύτερη.

    Έτσι, η εκτιμώμενη περιοχή εγκάρσιας διατομής του αγωγού καθορίζεται από τον τύπο:

    Το τελικό αποτέλεσμα λαμβάνεται σε τετραγωνικά εκατοστά, αφού σε τέτοιες μονάδες είναι πιο βολικό για την αντίληψη.

    Η πραγματική επιφάνεια εγκάρσιας διατομής του αγωγού καθορίζεται από τον τύπο:

    Ο πίνακας δείχνει τη ροή αέρα σε κυκλικούς και ορθογώνιους αεραγωγούς σε διαφορετικές ταχύτητες αέρα.

    Ο υπολογισμός των διαστάσεων του αγωγού γίνεται ξεχωριστά για κάθε κλάδο, ξεκινώντας από το κύριο κανάλι στο οποίο συνδέεται η μονάδα εξαερισμού. Σημειώστε ότι η ταχύτητα του αέρα στην έξοδο του μπορεί να είναι έως και 6-8 m / s, δεδομένου ότι οι διαστάσεις του συνδετικού AHU φλάντζα περιορίζεται από το μέγεθος του περιβλήματος του (θόρυβος που συμβαίνουν στο εσωτερικό του, αποσβέστηκε σιγαστήρα). Για να μειωθεί η ταχύτητα του αέρα και να μειωθεί ο θόρυβος, οι διαστάσεις του κύριου αγωγού επιλέγονται συχνά περισσότερο από τις διαστάσεις της φλάντζας του συστήματος εξαερισμού. Σε αυτή την περίπτωση, η σύνδεση του κύριου αγωγού με την εγκατάσταση εξαερισμού γίνεται μέσω προσαρμογέα.

    Τα συστήματα αερισμού οικιακής χρήσης χρησιμοποιούν συνήθως αγωγούς αέρα με διάμετρο 100 έως 250 mm ή ορθογώνια ισοδύναμη διατομή.

    Επιλογή διανομέων αέρα

    Γνωρίζοντας τη ροή του αέρα μπορεί να επιλέξει διαχύτες Catalog σύμφωνα με την αναλογία των μεγεθών τους και το επίπεδο θορύβου (το εμβαδόν διατομής του σκεδαστήρα είναι συνήθως 1,5-2 φορές το εμβαδόν διατομής του αγωγού). Για παράδειγμα, εξετάστε τις παραμέτρους των δημοφιλών δικτύων διανομής αέρα Άρτος σειρά AMN, ADN, AMP, ADR:

    Ο κατάλογος υποδεικνύει τις διαστάσεις τους (στήλη A x B) και την εγκάρσια διατομή (F0), καθώς και οι παράμετροι για δεδομένη ροή αέρα (στήλη L0). Καθώς αυξάνεται η ροή αέρα, αυξάνεται το επίπεδο θορύβουLwa) και πτώση πίεσης (ΔΡn), και επίσης αυξάνει το εύρος της δέσμης αέρα. Οι αντίστοιχες στήλες υποδεικνύουν την απόσταση από το τρίψιμο, στην οποία βρίσκεται η ταχύτητα του αέρα Vx θα είναι 0,2 ή 0,5 m / s. Για οικιακούς χώρους, η επιλογή πλέγματος πραγματοποιείται συνήθως σε στήλες με στάθμη θορύβου μέχρι 25 dB (A), στα γραφεία, η στάθμη θορύβου επιτρέπεται συνήθως μέχρι 35 dB (A).

    Προκειμένου οι πραγματικές παραμέτρους του πλέγματος να αντιστοιχούν σε αυτό που υποδεικνύεται στον κατάλογο, είναι απαραίτητο να διασφαλιστεί η ομοιόμορφη κατανομή του αέρα σε ολόκληρη την περιοχή του. Για να γίνει αυτό, είναι επιθυμητό να χρησιμοποιηθεί ένας στατικός θάλαμος πίεσης ή ένας προσαρμογέας με μια πλευρική σύνδεση στην οποία η ροή του αέρα πριν από τη στροφή του πλέγματος περιστρέφεται σε ορθή γωνία.

    Τα συστήματα αερισμού οικιακής χρήσης χρησιμοποιούν συνήθως δίκτυα διανομής κυμαινόμενα από 100 × 100 mm έως 400 × 200 mm ή στρογγυλά διαχύτες ισοδύναμης διατομής.

    Υπολογισμός αντοχής δικτύου

    Κατά την κίνηση του αέρα μέσω των αγωγών, των προσαρμογέων, των διανομέων και όλων των άλλων στοιχείων του δικτύου, βιώνει αντίσταση στην κίνηση. Για να ξεπεραστεί αυτή η αντίσταση και να διατηρηθεί η απαιτούμενη ροή αέρα, ο ανεμιστήρας πρέπει να δημιουργήσει μια ορισμένη πίεση, μετρούμενη σε Pascals (Pa). Όσο μεγαλύτερη είναι η πτώση πίεσης στο δίκτυο διανομής, τόσο μικρότερη είναι η πραγματική απόδοση του ανεμιστήρα. Η εξάρτηση της απόδοσης του ανεμιστήρα ή του συστήματος εξαερισμού από την αντίσταση (συνολική πίεση) του δικτύου αέρα δίνεται με τη μορφή ενός γραφήματος που ονομάζεται χαρακτηριστικά εξαερισμού. Περισσότερες λεπτομέρειες σχετικά με αυτήν την παράμετρο θα συζητηθούν παρακάτω.

    Έτσι, για περαιτέρω επιλογή της μονάδας επεξεργασίας αέρα, πρέπει να υπολογίσουμε την αντίσταση του δικτύου. Ωστόσο, εδώ αντιμετωπίζουμε δυσκολίες, καθώς ένας ακριβής υπολογισμός απαιτεί να ληφθεί υπόψη η αντίσταση κάθε στοιχείου του. Στο τμήμα σχεδιασμού, αυτός ο υπολογισμός εκτελείται αυτόματα χρησιμοποιώντας ένα εξειδικευμένο πακέτο λογισμικού, όπως το MagiCAD. Ο υπολογιστής χρησιμοποιεί μια ελαφρώς απλουστευμένη μεθοδολογία, η οποία ωστόσο λαμβάνει υπόψη όλες τις βασικές παραμέτρους του δικτύου. Ο χειρωνακτικός υπολογισμός είναι πολύ επίπονος και απαιτεί τη χρήση μεγάλου αριθμού δεδομένων - γραφημάτων ή πινάκων αντοχής στοιχείων δικτύου ανάλογα με την ταχύτητα της κίνησης του αέρα. Για αναφορά, δίνουμε τυπικές τιμές αντίστασης του δικτύου διανομής αέρα του συστήματος εξαερισμού με βάση την μονάδα τροφοδοσίας με ταχύτητα αέρα στους αεραγωγούς 3-4 m / s (εξαιρουμένης της αντοχής του λεπτού φίλτρου):

    • 75-100 Pa για διαμερίσματα που κυμαίνονται από 50 έως 150μ².
    • 100-150 Pa για εξοχικές κατοικίες με επιφάνεια από 150 έως 350 m².

    Το δίκτυο αντίσταση εξαρτάται ασθενώς από τον αριθμό των δωματίων που εξυπηρετούνται από και ορίζεται το μήκος και η διαμόρφωση του μακρύτερου μονοπατιού από την είσοδο (γρίλια αναρρόφησης) προς την έξοδο (διαχυτή). Σημειώστε ότι οι τιμές αυτές ισχύουν μόνο για τα συστήματα εξαερισμού στη βάση της μονάδας διαχείρισης αέρα, αλλά όχι στοιχειοθεσίας σύστημα, επειδή δεν πρέπει να ληφθούν υπόψη στο θερμαντήρα για την πτώση της πίεσης, το χοντρό φίλτρο, τη βαλβίδα αέρα και άλλα στοιχεία της AHU (χαρακτηριστικά εξαερισμού της κατασκευής, λαμβάνοντας ήδη υπόψη την αντίσταση όλων των στοιχείων αυτών).

    Ισχύς του θερμαντήρα αέρα

    Μετά τον προσδιορισμό της ικανότητας εξαερισμού, μπορούμε να υπολογίσουμε την απαιτούμενη χωρητικότητα του θερμαντήρα αέρα. Για να γίνει αυτό, χρειαζόμαστε την θερμοκρασία του αέρα στην έξοδο του συστήματος και την ελάχιστη θερμοκρασία εξωτερικού αέρα κατά την ψυχρή περίοδο του έτους. Η θερμοκρασία του αέρα που εισέρχεται στις κατοικίες δεν πρέπει να είναι μικρότερη από +18 ° C. Η ελάχιστη θερμοκρασία του εξωτερικού αέρα εξαρτάται από την κλιματική ζώνη και για τη Μόσχα θεωρείται ίση -26 ° C. Έτσι, όταν ο θερμαντήρας αέρα είναι ενεργοποιημένος σε πλήρη ισχύ, πρέπει να θερμαίνει τη ροή αέρα προς 44 ° C. Δεδομένου ότι σοβαρή παγετούς στη Μόσχα είναι σύντομες, μπορείτε να χρησιμοποιήσετε ένα θερμαντήρα μικρότερης χωρητικότητας, με την προϋπόθεση ότι το σύστημα εξαερισμού έχει μία απόδοση προσαρμογή: θα σε μια ψυχρή περίοδο για να διατηρηθεί άνετη θερμοκρασία του αέρα, μειώνοντας την ταχύτητα του ανεμιστήρα.

    Η ισχύς του θερμαντήρα αέρα υπολογίζεται από τον τύπο:

    Μετά τον υπολογισμό της ισχύος του θερμαντήρα αέρα, είναι απαραίτητο να επιλέξετε την τάση τροφοδοσίας (για τον ηλεκτρικό θερμαντήρα αέρα): 220V / 1 φάση ή 380V / 3 φάσεις. Με θερμαντική ισχύ μεγαλύτερη από 4-5 kW, είναι επιθυμητή η χρήση τριφασικής σύνδεσης. Το μέγιστο ρεύμα που καταναλώνεται από τον θερμαντήρα αέρα μπορεί να υπολογιστεί με τον τύπο:

    • 220V ?? για μονοφασική παροχή ·
    • 660V (3 × 220V); για τριφασική τροφοδοσία (όταν συνδέετε θερμαντήρες με ένα "αστέρι" μεταξύ 0 και φάσης).
  • Οι τυπικές τιμές της ισχύος του θερμαντήρα αέρα είναι από 1 έως 5 kW για διαμερίσματα και από 5 έως 50 kW για γραφεία και εξοχικές κατοικίες. Με υψηλή χωρητικότητα σχεδιασμού, είναι καλύτερο να εγκαταστήσετε έναν θερμοσίφωνα, ο οποίος χρησιμοποιεί ως πηγή θερμότητας νερό από κεντρικό ή αυτόνομο σύστημα θέρμανσης.

    Υπολογισμός της κατανάλωσης ηλεκτρικής ενέργειας

    Για τα συστήματα αερισμού με ηλεκτρικό θερμαντήρα αέρα, το κύριο κόστος ενέργειας είναι η θέρμανση του ψυχρού αέρα τροφοδοσίας. Για να καταλάβετε πόσο πρέπει να πληρώσετε για την ηλεκτρική ενέργεια, δεν αρκεί να γνωρίζετε μόνο τη δύναμη του θερμαντήρα αέρα, διότι με τη μέγιστη ισχύ των θερμαντικών σωμάτων θα λειτουργήσει για μικρό χρονικό διάστημα, μόνο στην περίοδο σοβαρών παγετώνων. Όταν η εξωτερική θερμοκρασία αυξάνεται, η κατανάλωση ισχύος μειώνεται (όλες οι μονάδες αέρα ρυθμίζουν αυτόματα την έξοδο του θερμαντήρα αέρα για να διατηρήσουν τη ρυθμισμένη θερμοκρασία στην έξοδο), έτσι ώστε η μέση κατανάλωση ενέργειας να είναι αισθητά χαμηλότερη από τη μέγιστη.

    Για να υπολογίσετε το κόστος ενέργειας για θέρμανση του αέρα καθ 'όλη τη διάρκεια του έτους, πρέπει να γνωρίζετε τη μέση θερμοκρασία του αέρα κατά μήνα (για μετρητή δύο τιμολογίων, χρειάζεστε ξεχωριστές θερμοκρασίες ημέρας και νύχτας). Σύμφωνα με αυτά τα δεδομένα, το κόστος της κατανάλωσης ενέργειας μπορεί να υπολογιστεί:

    Στην αριθμομηχανή, αυτός ο τύπος υπολογίζει το κόστος της ηλεκτρικής ενέργειας που χρησιμοποιείται για τη θέρμανση του αέρα κατά την περίοδο Σεπτεμβρίου-Μαΐου. Πληροφορίες σχετικά με τη μέση ημερήσια και νυχτερινή θερμοκρασία λαμβάνονται από την υπηρεσία Yandeks.Pogoda, τα τιμολόγια για την ηλεκτρική ενέργεια αναφέρονται την 1η Ιουλίου 2012 για διαμερίσματα με ηλεκτρικές σόμπες. Το πραγματικό κόστος ηλεκτρικής ενέργειας, φυσικά, θα είναι ελαφρώς διαφορετικό, καθώς η θερμοκρασία του αέρα μπορεί να διαφέρει από τη μέση προς τη μία ή την άλλη κατεύθυνση, ωστόσο το αποτέλεσμα που προκύπτει θα μας επιτρέψει να υπολογίσουμε με ακρίβεια το επίπεδο κόστους για τη λειτουργία του συστήματος εξαερισμού.

    Για να μειωθεί το κόστος λειτουργίας, είναι δυνατή η χρήση ενός συστήματος VAV που μειώνει την ικανότητα σχεδιασμού του θερμαντήρα αέρα κατά 20-30% και τη μέση κατανάλωση ενέργειας κατά 30-50%. Την ίδια στιγμή, η αύξηση του κόστους εξοπλισμού θα είναι μόνο 15-20%, η οποία θα αποπληρώσει πλήρως αυτή την ανατίμηση σε ένα χρόνο. Περισσότερες λεπτομέρειες σχετικά με τέτοια συστήματα αερισμού μπορούν να διαβαστούν στο αντικείμενο του συστήματος VAV.

    Επιλογή Εφοδιασμού

    Για την επιλογή της μονάδας επεξεργασίας αέρα χρειάζονται τρεις παράμετροι: η συνολική χωρητικότητα, η χωρητικότητα του θερμαντήρα αέρα και η αντίσταση του δικτύου παροχής αέρα. Έχουμε ήδη υπολογίσει την χωρητικότητα και την ισχύ του θερμαντήρα αέρα. Η αντίσταση του δικτύου μπορεί να βρεθεί με τη βοήθεια του Υπολογιστή ή, με χειροκίνητο υπολογισμό, να ληφθεί ίση με την τυπική τιμή (βλ. Ενότητα Υπολογισμός αντοχής δικτύου).

    Για να επιλέξετε το κατάλληλο μοντέλο, πρέπει να επιλέξετε τους ανεμιστήρες των οποίων η μέγιστη απόδοση είναι ελαφρώς υψηλότερη από την υπολογισμένη τιμή. Μετά από αυτό, στο χαρακτηριστικό εξαερισμού, προσδιορίζουμε την απόδοση του συστήματος σε μια δεδομένη αντίσταση δικτύου. Αν η ληφθείσα τιμή είναι ελαφρώς υψηλότερη από την απαιτούμενη απόδοση του συστήματος εξαερισμού, τότε το επιλεγμένο μοντέλο μας ταιριάζει.

    Για παράδειγμα, ας ελέγξουμε αν η εγκατάσταση ventu είναι κατάλληλη για το εξοχικό σπίτι με έκταση 200 m², που φαίνεται στο σχήμα.

    Εκτιμώμενη παραγωγικότητα - 450 m³ / h. Η αντίσταση του δικτύου θα είναι 120 Pa. Για να προσδιορίσουμε την πραγματική απόδοση, πρέπει να σχεδιάσουμε μια οριζόντια γραμμή από την τιμή των 120 Pa, τότε από το σημείο της τομής της με το γράφημα για να σχεδιάσουμε μια κάθετη γραμμή. Το σημείο τομής αυτής της γραμμής με τον άξονα "παραγωγικότητα" θα μας δώσει την επιθυμητή τιμή - περίπου 480 m³ / h, η οποία είναι ελαφρώς υψηλότερη από την υπολογιζόμενη τιμή. Έτσι, αυτό το μοντέλο μας ταιριάζει.

    Σημειώστε ότι πολλοί σύγχρονοι ανεμιστήρες έχουν απαλές ανεμιστήρες. Αυτό σημαίνει ότι τα πιθανά σφάλματα στον προσδιορισμό της αντίστασης του δικτύου δεν έχουν σχεδόν καμία επίδραση στην πραγματική απόδοση του συστήματος εξαερισμού. Εάν, στο παράδειγμά μας ένα λάθος κατά τον προσδιορισμό της αντίστασης του δικτύου οδηγού αέρα 50 Pa (δηλαδή, η πραγματική αντίσταση του δικτύου δεν θα ήταν 120 και 180 Ρα), η απόδοση του συστήματος θα μειωθεί μόνο κατά 20 m³ / h έως 460 m³ / h, η οποία δεν επηρεάζεται θα ήταν το αποτέλεσμα της επιλογής μας.

    Μετά την επιλογή της μονάδας επεξεργασίας αέρα (ή του ανεμιστήρα, εάν χρησιμοποιείται το σύστημα τηλεφωνικής κλήσης), μπορεί να αποδειχθεί ότι η πραγματική του απόδοση είναι αισθητά υψηλότερη από την εκτιμώμενη και ότι το προηγούμενο μοντέλο της μονάδας κλιματισμού δεν είναι κατάλληλο, δεδομένου ότι η χωρητικότητά της δεν επαρκεί. Σε αυτήν την περίπτωση, έχουμε διάφορες επιλογές:

    1. Αφήστε τα πάντα όπως είναι, ενώ η πραγματική ικανότητα εξαερισμού θα είναι υψηλότερη από την υπολογιζόμενη. Αυτό θα οδηγήσει σε αυξημένη κατανάλωση ενέργειας, που καταναλώνεται για τη θέρμανση του αέρα κατά την κρύα εποχή.
    2. "Strangle" ventuvantovu με βαλβίδες στραγγαλισμού εξισορρόπησης, κλείνοντας τους μέχρι η ροή αέρα σε κάθε δωμάτιο να μην πέσει στο υπολογιζόμενο επίπεδο. Αυτό θα οδηγήσει επίσης σε υπερβολική κατανάλωση ενέργειας (αν και όχι τόσο μεγάλη όσο στην πρώτη έκδοση), καθώς ο ανεμιστήρας θα λειτουργήσει με υπερβολικό φορτίο, ξεπερνώντας την αυξημένη αντίσταση του δικτύου.
    3. Μην συμπεριλάβετε τη μέγιστη ταχύτητα. Αυτό θα βοηθήσει αν ο αεραγωγός έχει 5-8 ταχύτητες ανεμιστήρα (ή ομαλή ρύθμιση ταχύτητας). Ωστόσο, οι περισσότεροι αερόσακοι προϋπολογισμού έχουν μόνο έλεγχο ταχύτητας σε 3 βήματα, ο οποίος, πιθανότατα, δεν θα σας επιτρέψει να επιλέξετε επακριβώς την απαιτούμενη απόδοση.
    4. Μειώστε τη μέγιστη χωρητικότητα της μονάδας επεξεργασίας αέρα ακριβώς στο καθορισμένο επίπεδο. Αυτό είναι εφικτό σε περίπτωση που το αυτόματο σύστημα εξαερισμού σας επιτρέπει να ρυθμίσετε τη μέγιστη ταχύτητα του ανεμιστήρα.

    Θα πρέπει να καθοδηγείται από το SNiP;

    Σε όλους τους υπολογισμούς που πραγματοποιήσαμε, χρησιμοποιήθηκαν οι συστάσεις των SNiP και MGSN. Αυτή η κανονιστική τεκμηρίωση σάς επιτρέπει να καθορίσετε την ελάχιστη επιτρεπόμενη χωρητικότητα εξαερισμού, εξασφαλίζοντας μια άνετη διαμονή των ατόμων στο δωμάτιο. Με άλλα λόγια, οι απαιτήσεις SNiP αποσκοπούν κυρίως στην ελαχιστοποίηση του κόστους του συστήματος εξαερισμού και του κόστους λειτουργίας του, το οποίο είναι σημαντικό για το σχεδιασμό των συστημάτων εξαερισμού για τα διοικητικά και δημόσια κτίρια.

    Σε διαμερίσματα και εξοχικά σπίτια η κατάσταση είναι διαφορετική, επειδή σχεδιάζετε αερισμό για τον εαυτό σας και όχι για έναν μέσον κάτοικο και κανείς δεν σας αναγκάζει να τηρείτε τις συστάσεις του SNiP. Για το λόγο αυτό, η απόδοση του συστήματος μπορεί να είναι είτε υψηλότερη από την τιμή σχεδιασμού (για μεγαλύτερη άνεση) ή χαμηλότερη (για να μειωθεί η κατανάλωση ενέργειας και το κόστος του συστήματος). Επιπλέον, το υποκειμενικό αίσθημα άνεσης είναι διαφορετικό για όλους: κάποιος είναι αρκετά 30-40 m³ / h ανά άτομο, και για κάποιον θα είναι μικρό και 60 m³ / h.

    Ωστόσο, εάν δεν γνωρίζετε ποια ανταλλαγή αέρα χρειάζεστε για να αισθανθείτε άνετα, είναι καλύτερο να ακολουθείτε τις συστάσεις του SNiP. Καθώς οι σύγχρονες μονάδες αέρος σας επιτρέπουν να ρυθμίζετε την απόδοση από τον πίνακα ελέγχου, μπορείτε να βρείτε έναν συμβιβασμό μεταξύ άνεση και οικονομία ήδη κατά τη λειτουργία του συστήματος εξαερισμού.

    Επίπεδο θορύβου του συστήματος εξαερισμού

    Πώς να κάνετε ένα "ήσυχο" σύστημα εξαερισμού που δεν παρεμβαίνει στον ύπνο τη νύχτα, περιγράφεται στην ενότητα Εξαερισμός για ένα διαμέρισμα και ένα ιδιωτικό σπίτι.

    Σχεδιασμός του συστήματος εξαερισμού

    Για τον ακριβή υπολογισμό των παραμέτρων του συστήματος εξαερισμού και την ανάπτυξη του έργου, επικοινωνήστε με το Τμήμα Έργου. Μπορείτε επίσης να υπολογίσετε χρησιμοποιώντας την αριθμομηχανή το εκτιμώμενο κόστος ενός ιδιωτικού συστήματος εξαερισμού σπιτιών.

    Υπολογισμός της γενικής ανταλλαγής και του τοπικού αερισμού των εγκαταστάσεων παραγωγής

    Το περιβάλλον του αέρα στα βιομηχανικά κτίρια μολύνεται πολύ πιο έντονα από ότι σε διαμερίσματα και ιδιωτικές κατοικίες. Οι τύποι και οι ποσότητες επιβλαβών εκπομπών εξαρτώνται από πολλούς παράγοντες - τον τομέα παραγωγής, τον τύπο των πρώτων υλών, τον τεχνολογικό εξοπλισμό που χρησιμοποιείται και ούτω καθεξής. Είναι μάλλον δύσκολο να υπολογιστεί και να σχεδιαστεί ο εξαερισμός των βιομηχανικών χώρων, ο οποίος απομακρύνει κάθε βλαπτικότητα. Θα προσπαθήσουμε σε μια προσιτή γλώσσα για να καθορίσουμε τις μεθόδους υπολογισμού που προβλέπονται στα κανονιστικά έγγραφα.

    Σχεδιασμός Αλγόριθμος

    Η οργάνωση της ανταλλαγής αέρα σε ένα δημόσιο κτίριο ή στην παραγωγή πραγματοποιείται σε διάφορα στάδια:

    1. Η συλλογή των αρχικών δεδομένων - τα χαρακτηριστικά της δομής, ο αριθμός των εργαζομένων και η σοβαρότητα της εργασίας, η ποικιλία και η ποσότητα των επιβλαβών ουσιών που σχηματίζονται, ο εντοπισμός των τόπων διαχωρισμού. Είναι πολύ χρήσιμο να κατανοήσουμε την ουσία της τεχνολογικής διαδικασίας.
    2. Επιλογή του συστήματος εξαερισμού του καταστήματος ή του γραφείου, ανάπτυξη των σχεδίων. Στις λύσεις σχεδιασμού παρουσιάζονται 3 βασικές απαιτήσεις - αποδοτικότητα, συμμόρφωση με τους κανόνες SNiP (SanPin) και οικονομική ισχύς.
    3. Υπολογισμός της ανταλλαγής αέρα - προσδιορισμός του όγκου της παροχής και του αέρα εξαγωγής για κάθε δωμάτιο.
    4. Αεροδυναμικός υπολογισμός των αεραγωγών (εάν υπάρχουν), επιλογή και διαρρύθμιση του εξοπλισμού εξαερισμού. Βελτίωση των συστημάτων εισροής και απομάκρυνσης του μολυσμένου αέρα.
    5. Εγκατάσταση αερισμού σύμφωνα με το έργο, εκκίνηση, περαιτέρω λειτουργία και συντήρηση.

    Σημείωση: Για την καλύτερη κατανόηση της διαδικασίας, ο κατάλογος των έργων είναι πολύ απλοποιημένος. Σε όλα τα στάδια της ανάπτυξης της τεκμηρίωσης απαιτούνται διάφορες εγκρίσεις, διευκρινίσεις και συμπληρωματικές έρευνες. Ο μηχανικός-σχεδιαστής εργάζεται συνεχώς σε συνεργασία με τους τεχνολόγους της επιχείρησης.

    Μας ενδιαφέρουν τα σημεία 2 και 3 - επιλέγοντας το καλύτερο σύστημα ανταλλαγής αέρα και προσδιορίζοντας τη ροή του αέρα. Αεροδυναμική, εγκατάσταση αεραγωγών και εξοπλισμού - εκτεταμένα θέματα άλλων εκδόσεων.

    Είδη συστημάτων εξαερισμού

    Για να οργανώσετε σωστά την ανακαίνιση του ατμοσφαιρικού περιβάλλοντος του δωματίου, πρέπει να επιλέξετε τη βέλτιστη μέθοδο αερισμού ή συνδυασμό πολλών επιλογών. Παρακάτω, το διάγραμμα δομής απλοποιεί την ταξινόμηση των υφιστάμενων συστημάτων εξαερισμού, τα οποία είναι διατεταγμένα στην παραγωγή.

    Ας εξηγήσουμε λεπτομερέστερα κάθε τύπο ανταλλαγής αέρα:

    1. Ο μη οργανωμένος φυσικός αερισμός αναφέρεται στον αερισμό και τη διείσδυση - στη διείσδυση του αέρα μέσω των θυρών και άλλων ρωγμών. Οργανωμένη τροφοδοσία - αερισμός - γίνεται από τα παράθυρα μέσω των εκτροπέων καυσαερίων και των αντιαεροπορικών φακών.
    2. Οι βοηθητικοί ανεμιστήρες οροφής και οροφής αυξάνουν την ένταση της ανταλλαγής με τη φυσική κίνηση των μαζών του αέρα.
    3. Το μηχανικό σύστημα υπονοεί την εξαναγκασμένη διανομή και εξαγωγή αέρα από τους ανεμιστήρες μέσω αγωγών. Αυτό περιλαμβάνει τον εξαερισμό έκτακτης ανάγκης και διάφορες τοπικές αναρρόφησης - ομπρέλες, πάνελ, καταφύγια, εργαστήρια καυσαερίων.
    4. Κλιματισμός - φέρνοντας το περιβάλλον αέρα του καταστήματος ή του γραφείου στην απαιτούμενη κατάσταση. Πριν εισέλθετε στην περιοχή εργασίας, ο αέρας καθαρίζεται με φίλτρα, υγραίνεται / αποξηραίνεται, θερμαίνεται ή ψύχεται.
    Θέρμανση / ψύξη του αέρα με εναλλάκτες θερμότητας - θερμαντήρες αέρα

    Βοήθεια. Σύμφωνα με την κανονιστική τεκμηρίωση, το χαμηλότερο μέρος του εργαστηρίου όγκου, ύψους 2 μέτρων από το δάπεδο, όπου οι άνθρωποι βρίσκονται συνεχώς, ανήκει στην εξυπηρετούμενη (λειτουργική) ζώνη.

    Συχνά, ο μηχανικός αερισμός εξαεριζόμενου αέρα συνδυάζεται με θέρμανση αέρα - το χειμώνα η ροή του δρόμου θερμαίνεται στη βέλτιστη θερμοκρασία, δεν έχουν εγκατασταθεί καλοριφέρ νερού. Ο μολυσμένος θερμός αέρας αποστέλλεται στον ανακτητή, όπου δίδει το 50-70% της θερμότητας στην εισροή.

    Για να επιτευχθεί η μέγιστη απόδοση σε λογική τιμή του εξοπλισμού επιτρέπει έναν συνδυασμό των αναφερόμενων επιλογών. Παράδειγμα: σε ένα συγκρότημα συγκόλλησης επιτρέπεται να σχεδιάζεται φυσικός αερισμός, υπό τον όρο ότι κάθε στύλος είναι εφοδιασμένος με εξαναγκασμένη τοπική εξάτμιση.

    Σχέδιο ροής για φυσικό αερισμό

    Συμβουλές για την επιλογή

    Οι άμεσες οδηγίες για την ανάπτυξη των συστημάτων ανταλλαγής αέρα δίνουν υγειονομικά και βιομηχανικά πρότυπα, τίποτα για να εφεύρουν και να εφεύρουν δεν είναι απαραίτητο. Τα έγγραφα αναπτύσσονται ξεχωριστά για δημόσια κτίρια και διάφορες βιομηχανίες - μεταλλουργικές, χημικές, επιχειρήσεις δημόσιας εστίασης κ.ο.κ.

    Ένα παράδειγμα. Αναπτύσσοντας τον αερισμό του θερμού συγκροτήματος συγκόλλησης, βρίσκουμε το έγγραφο "Υγειονομικοί κανόνες για συγκόλληση, επίστρωση και κοπή μετάλλων", διαβάζουμε την παράγραφο 3, παράγραφοι 41-60. Καθορίζουν όλες τις απαιτήσεις για τοπικό και γενικό αερισμό, ανάλογα με τον αριθμό των εργαζομένων και την κατανάλωση υλικών.

    Ο εξαερισμός των βιομηχανικών εγκαταστάσεων επιλέγεται ανάλογα με το σκοπό, την οικονομική σκοπιμότητα και σύμφωνα με τα ισχύοντα πρότυπα:

    1. Στα κτίρια γραφείων συνηθίζεται να γίνεται φυσική ανταλλαγή αέρα - αερισμός, αερισμός. Με αυξημένη συσσώρευση ανθρώπων, προβλέπεται να εγκατασταθούν βοηθητικοί ανεμιστήρες ή να οργανωθεί η ανταλλαγή αέρα με μηχανική ώθηση.
    2. Στα μηχανήματα κατασκευής, επισκευής και έλασης μεγάλων μεγεθών, ο εξαναγκασμένος εξαερισμός θα είναι υπερβολικά δαπανηρός. Το συμβατικό σχήμα: ένα φυσικό εκχύλισμα μέσω φανών ή εκτροπέων, η εισροή οργανώνεται από τους ανοιχτούς τοίχους. Το χειμώνα ανοίγουν τα επάνω παράθυρα (ύψος - 4 μ.), Το καλοκαίρι - τα χαμηλότερα.
    3. Κατά την αποδέσμευση τοξικών, επικίνδυνων και επιβλαβών ατμών, δεν επιτρέπεται αερισμός και αερισμός.
    4. Στους χώρους εργασίας δίπλα από τον θερμαινόμενο εξοπλισμό είναι ευκολότερο και πιο σωστό να οργανωθεί ο στραγγαλισμός των ανθρώπων με καθαρό αέρα από τη συνεχή ενημέρωση ολόκληρου του όγκου του εργαστηρίου.
    5. Σε μικρές εγκαταστάσεις με μικρό αριθμό πηγών ρύπανσης, είναι προτιμότερο να εγκαθίστανται τοπικές αναρρόφησης με τη μορφή ομπρελών ή πινάκων και να παρέχεται ένας γενικός αερισμός για φυσικούς.
    6. Σε βιομηχανικά κτίρια με μεγάλο αριθμό χώρων εργασίας και πηγές βλαβών, είναι απαραίτητο να γίνει μια ισχυρή αναγκαστική ανταλλαγή αέρα. Δεν είναι σκόπιμο να δημιουργηθούν 50 ή περισσότερα τοπικά αποσπάσματα, εκτός εάν τα μέτρα αυτά υπαγορεύονται από τους κανόνες.
    7. Στα εργαστήρια και στους χώρους εργασίας των χημικών εγκαταστάσεων, ο κάθε αερισμός γίνεται μηχανικά και η ανακύκλωση απαγορεύεται.
    Το έργο της γενικής ανταλλαγής εξαναγκασμένου αερισμού ενός τριώροφου κτιρίου με τη χρήση ενός κεντρικού κλιματιστικού (διαμήκης τομή)

    Σημείωση: Η επανακυκλοφορία είναι η επιστροφή ενός τμήματος του δειγματοληπτικού αέρα πίσω στο εργαστήριο, προκειμένου να εξοικονομείται θερμότητα (το καλοκαίρι - το κρύο) που καταναλώνεται για θέρμανση. Μετά τη διήθηση, το τμήμα αυτό αναμιγνύεται με νέα ροή δρόμου σε διάφορες αναλογίες.

    Δεδομένου ότι δεν είναι δυνατόν να ληφθούν υπόψη όλα τα είδη παραγωγών στο πλαίσιο μιας έκδοσης, εκθέσαμε τις γενικές αρχές του σχεδιασμού της ανταλλαγής αέρα. Μια λεπτομερέστερη περιγραφή παρουσιάζεται στη σχετική τεχνική βιβλιογραφία, για παράδειγμα, το εγχειρίδιο OD Volkov "Σχεδιασμός εξαερισμού ενός βιομηχανικού κτιρίου". Η δεύτερη αξιόπιστη πηγή είναι το φόρουμ των μηχανικών της AVOK (http://forum.abok.ru).

    Μέθοδοι υπολογισμού της ανταλλαγής αέρα

    Ο σκοπός των υπολογισμών είναι να προσδιοριστεί ο ρυθμός ροής του αέρα τροφοδοσίας. Εάν η παραγωγή χρησιμοποιεί κουκούλες σημείων, η ποσότητα αέρα που αφαιρείται από τις ομπρέλες προστίθεται στον εισερχόμενο όγκο της εισροής.

    Για αναφορά. Οι συσκευές εξάτμισης έχουν πολύ μικρή επίδραση στην κίνηση των ροών μέσα στο κτίριο. Βοηθήστε τους να τροφοδοτήσουν τη σωστή κατεύθυνση του αέρα παροχής.

    Σύμφωνα με τον SNiP, ο υπολογισμός του αερισμού των εγκαταστάσεων παραγωγής γίνεται σύμφωνα με τους ακόλουθους δείκτες:

    • υπερβολική θερμότητα που παράγεται από θερμαινόμενο εξοπλισμό και προϊόντα ·
    • υδρατμούς κορεσμού του αέρα κατάστημα?
    • επιβλαβείς (τοξικές) εκπομπές με τη μορφή αερίων, σκόνης και αερολυμάτων ·
    • αριθμός εργαζομένων.

    Ένα σημαντικό σημείο. Στις βοηθητικές και διάφορες οικιακές αίθουσες, το κανονιστικό πλαίσιο προβλέπει επίσης τον υπολογισμό της πολλαπλότητας της ανταλλαγής. Μπορείτε να δείτε τη μεθοδολογία και να χρησιμοποιήσετε τον ηλεκτρονικό υπολογιστή σε αυτή τη σελίδα.

    Ένα παράδειγμα συστήματος τοπικών αντλιών που λειτουργούν από έναν μόνο ανεμιστήρα. Παρέχεται συλλογή σκόνης με πλυντήριο και πρόσθετο φίλτρο.

    Στην ιδανική περίπτωση, ο συντελεστής εισροής λαμβάνεται υπόψη για όλους τους δείκτες. Το μεγαλύτερο από τα ληφθέντα αποτελέσματα είναι αποδεκτό για την περαιτέρω ανάπτυξη του συστήματος. Μία απόχρωση: εάν διατίθενται δύο τύποι επικίνδυνων αερίων που αλληλεπιδρούν μεταξύ τους, η εισροή υπολογίζεται για καθένα από αυτά και τα αποτελέσματα συνοψίζονται.

    Θεωρούμε την κατανάλωση θερμικών εκπομπών

    Προτού ξεκινήσετε τον υπολογισμό, πρέπει να κάνετε προπαρασκευαστικές εργασίες για τη συλλογή των πηγών δεδομένων:

    • Μάθετε τις περιοχές όλων των θερμών επιφανειών.
    • βρείτε τη θερμοκρασία θέρμανσης.
    • Υπολογίστε την ποσότητα της απελευθερωμένης θερμότητας.
    • καθορίστε τη θερμοκρασία του αέρα στην περιοχή εργασίας και πέρα ​​από αυτό (πάνω από 2 μέτρα πάνω από το πάτωμα).

    Στην πράξη, το πρόβλημα επιλύεται από κοινού με τον μηχανικό-τεχνολόγο της επιχείρησης, παρέχοντας πληροφορίες σχετικά με τον εξοπλισμό παραγωγής, τα χαρακτηριστικά των προϊόντων και τις λεπτότητες της παραγωγικής διαδικασίας. Γνωρίζοντας αυτές τις παραμέτρους, υπολογίστε με τον τύπο:

    · L - ο απαιτούμενος όγκος αέρα που τροφοδοτείται από τις μονάδες τροφοδοσίας ή διεισδύει μέσα από τους τροχούς, m³ / h.

    • Lwz - η ποσότητα αέρα που λαμβάνεται από τη συντηρούμενη ζώνη με αντλίες σημείου, m³ / h.
    • Q είναι η απελευθέρωση θερμότητας, W;
    • c είναι η θερμική ικανότητα του μείγματος αέρα, λαμβάνεται ίση με 1.006 kJ / (kg ° C).
    • Κασσίτερος - θερμοκρασία του μείγματος που τροφοδοτείται στο κατάστημα.
    • Tl, Twz - θερμοκρασία αέρα πάνω από την περιοχή εργασίας και εντός αυτής.

    Ο υπολογισμός φαίνεται δυσκίνητος, αλλά εάν υπάρχουν διαθέσιμα δεδομένα, γίνεται χωρίς προβλήματα. Παράδειγμα: η ροή θερμότητας μέσα στο δωμάτιο Q είναι 20.000 W, οι πίνακες εξαγωγής αφαιρούν 2000 m³ / h (Lwz) η θερμοκρασία στο δρόμο είναι + 20 ° C, στο εσωτερικό - συν 30 και 25, αντίστοιχα. Θεωρούμε ότι: L = 2000 + [3,6 x 20000 - 1,006 x 2000 (25 - 20) / 1,006 (30 - 20)] = 8157 m³ / h.

    Υπερβαίνει τους υδρατμούς

    Ο ακόλουθος τύπος επαναλαμβάνει ουσιαστικά την προηγούμενη, μόνο οι παράμετροι θερμότητας αντικαθίστανται από την ένδειξη της υγρασίας:

    • W - ο αριθμός των υδρατμών που προέρχονται από τις πηγές ανά μονάδα χρόνου, γραμμάρια ανά ώρα.
    • Din - περιεκτικότητα σε υγρασία στην εισροή, g / kg.
    • Dwz, Dl - περιεκτικότητα σε υγρασία του αέρα της περιοχής εργασίας και του άνω μέρους του δωματίου, αντίστοιχα.
    • Οι υπόλοιπες σημειώσεις είναι οι ίδιες με αυτές του προηγούμενου τύπου.

    Η πολυπλοκότητα της τεχνικής είναι η απόκτηση των αρχικών δεδομένων. Όταν το αντικείμενο είναι κατασκευασμένο και οι εργασίες παραγωγής, οι δείκτες υγρασίας είναι εύκολο να προσδιοριστούν. Ένα άλλο ζήτημα είναι ο υπολογισμός των εκπομπών ατμών στο εργαστήριο κατά το σχεδιασμό. Η ανάπτυξη θα πρέπει να εξεταστεί από δύο ειδικούς - έναν μηχανικό της διαδικασίας και έναν σχεδιαστή ανεμιστήρα.

    Εκπομπές σκόνης και επιβλαβών ουσιών

    Σε αυτή την περίπτωση, είναι σημαντικό να μελετήσουμε καλά τις λεπτότητες της τεχνολογικής διαδικασίας. Ο στόχος είναι να συγκεντρωθεί ένας κατάλογος κινδύνων, να προσδιοριστεί η συγκέντρωσή τους και να υπολογιστεί ο ρυθμός ροής του παρεχόμενου καθαρού αέρα. Τύπος υπολογισμού:

    • Mpo - μάζα επιβλαβούς ουσίας ή σκόνης που απελευθερώνεται ανά μονάδα χρόνου, mg / ώρα.
    • Qin - η περιεκτικότητα της ουσίας αυτής στον εξωτερικό αέρα, mg / m³.
    • Qwz - μέγιστη επιτρεπτή συγκέντρωση (MPC) επιβλαβών στον όγκο της επιφάνειας που εξυπηρετείται, mg / m³.
    • Ql είναι η συγκέντρωση αερολύματος ή σκόνης στο υπόλοιπο του συνεργείου.
    • η ερμηνεία των σημείων L και Lwz δίδεται στον πρώτο τύπο.

    Ο αλγόριθμος εξαερισμού έχει ως εξής. Η εκτιμώμενη ποσότητα εισροής, η αραίωση του εσωτερικού αέρα και η μείωση της συγκέντρωσης ρύπων αποστέλλονται στο δωμάτιο. Το μερίδιο του λέοντος επιβλαβών και πτητικών ουσιών αντλείται από τοπικές ομπρέλες που βρίσκονται πάνω από τις πηγές, ένα μείγμα αερίων απομακρύνει τη μηχανική εξάτμιση.

    Αριθμός εργαζομένων

    Η μεθοδολογία χρησιμοποιείται για τον υπολογισμό της εισροής στο γραφείο και σε άλλα δημόσια κτίρια όπου δεν υπάρχουν βιομηχανικοί ρύποι. Είναι απαραίτητο να μάθετε τον αριθμό των μόνιμων θέσεων εργασίας (που υποδηλώνεται με το λατινικό γράμμα N) και να χρησιμοποιήσετε τον τύπο:

    Η παράμετρος m υποδεικνύει τον όγκο του καθαρού με αέρα αέρα που κατανέμεται σε 1 σταθμό εργασίας. Στα αεριζόμενα γραφεία, η τιμή του m θεωρείται ίση με 30 m³ / h, πλήρως κλειστή - 60 m³ / h.

    ΠΑΡΑΤΗΡΗΣΗ. Μόνο μόνιμες θέσεις εργασίας λαμβάνονται υπόψη, όπου οι εργαζόμενοι μένουν τουλάχιστον 2 ώρες την ημέρα. Ο αριθμός των επισκεπτών δεν παίζει ρόλο.

    Υπολογισμός μιας ομπρέλας τοπικού εκχυλίσματος

    Το καθήκον της τοπικής αναρρόφησης είναι να επιλεγεί το επιβλαβές αέριο και σκόνη στο στάδιο της εκχύλισης, απευθείας από την πηγή. Για να επιτύχετε τη μέγιστη απόδοση, θα πρέπει να επιλέξετε σωστά το μέγεθος της ομπρέλας, ανάλογα με το μέγεθος της πηγή και το ύψος της ανάρτησης. Είναι πιο βολικό να εξεταστεί η τεχνική υπολογισμού με αναφορά στο σχέδιο της αναρρόφησης.

    Ας αποκαλύψουμε τα γράμματα στο διάγραμμα:

    • A, B - το επιθυμητό μέγεθος της ομπρέλας στο σχέδιο.
    • h είναι η απόσταση από το κάτω άκρο του συσπειρωτήρα στην επιφάνεια της εστίασης εκτόξευσης.
    • α, β - διαστάσεις του εξοπλισμού που πρόκειται να κλείσει,
    • D - διάμετρος του αγωγού εξαερισμού.
    • H - το ύψος της ανάρτησης, είναι αποδεκτό όχι περισσότερο από 1,8... 2 μ?
    • α (άλφα) - γωνία ανοίγματος ομπρέλας, ιδανικά δεν υπερβαίνει τους 60 °.

    Πρώτα απ 'όλα, υπολογίζουμε τις διαστάσεις αναρρόφησης σε όρους απλών τύπων:

    Στη συνέχεια, με τη μέθοδο επιλογής, καθορίζουμε τη γωνία ανοίγματος και προχωρούμε για τον υπολογισμό του ρυθμού ροής αέρα εισαγωγής:

    • F - η περιοχή του ευρέος μέρους της ομπρέλας, υπολογίζεται ως A x B,
    • ʋ - ταχύτητα ροής αέρα στην ευθυγράμμιση του κιβωτίου, για μη τοξικά αέρια και σκόνη λαμβάνουμε 0.15... 0.25 m / s.

    Σημείωση: Εάν είναι απαραίτητο να απορροφηθούν οι τοξικοί κίνδυνοι, οι κανόνες απαιτούν την αύξηση της ταχύτητας ροής καυσαερίων σε 0,75... 1,05 m / s.

    Γνωρίζοντας την ποσότητα του αέρα εξαέρωσης, δεν είναι δύσκολο να επιλέξετε τον ανεμιστήρα του καναλιού της απαιτούμενης απόδοσης. Η διατομή και η διάμετρος του αγωγού εξαγωγής καθορίζονται από τον αντίστροφο τύπο:

    Συμπέρασμα

    Ο σχεδιασμός των δικτύων εξαερισμού είναι έργο έμπειρων μηχανικών. Ως εκ τούτου, η έκδοσή μας είναι διερευνητική στη φύση, οι εξηγήσεις και οι αλγόριθμοι υπολογισμού είναι κάπως απλουστευμένοι. Εάν θέλετε να κατανοήσετε πλήρως τα ζητήματα αερισμού των χώρων στην παραγωγή, σας συνιστούμε να μελετήσετε τη σχετική τεχνική βιβλιογραφία, δεν υπάρχει άλλος τρόπος. Τέλος - η μεθοδολογία υπολογισμού της θέρμανσης του αέρα στο βίντεο.